
Mr. Dave Clausen
La Cañada High School

Unit 3 Lesson 9
Repetition Statements

(Loops)

Mr. Dave Clausen 2

Introduction to Loops

We all know that much of the work a
computer does is repeated many times.
When a program repeats a group of
statements a given number of items, the
repetition is accomplished using a loop.
This will be our third category of structures:
iteration structures.
Loops are iteration structures.
Each loop or pass through a group of
statements is called an iteration.

Mr. Dave Clausen 3

Repetition Statements

Our third control structure: iteration or
repetition (completes our three control
structures: sequence, selection, iteration)
Two main categories of repetition:

definite loop
repeats a predetermined number of times

indefinite loop
repeats a number of times that has not been
predetermined.

Mr. Dave Clausen 4

Repetition Forms

Three loop types:
for<a definite number of times> <do action>
while<condition is true> <do action>
do<action> while <condition is true>

Three basic constructs
A variable is assigned some value.
The value of the variable changes at some point in the
loop.
The loop repeats until the variable reaches a
predetermined value, the program then executes the
next statement after the loop.

Mr. Dave Clausen 5

Pretest Loops

Pretest Loop (Entrance Controlled Loops)
a loop where the control condition (Boolean
expression) is tested BEFORE the loop.
If the condition is true, the loop is executed.
If the condition is false the loop is not executed
Therefore, it is possible that these loops may not
be executed at all (when the condition is False)
There are two pretest loops

for loop
while loop

Mr. Dave Clausen 6

Post Test Loops
Post Test Loops (exit-controlled loop)

a loop where the control condition (Boolean
expression) is tested AFTER the loop has been
executed.
If the condition is true, the loop is executed again.
If the condition is false the loop is not executed
again.
Therefore, this type of loop will always be
executed at least once.
There is one post test loop: do…while

Mr. Dave Clausen 7

Fixed repetition loops
Fixed repetition loop

a loop used when you know in advance how
many repetitions need to be executed, or when
you ask the user how many repetitions are
needed.
also known as a definite loop:

The programmer knows, or the user chooses the
definite number of repetitions necessary to solve the
problem.

the “for” loop is:
a fixed repetition loop
and a pretest loop

Mr. Dave Clausen 8

Variable Condition Loops

Variable Condition Loops
needed to solve problems where the conditions
change within the body of the loop.
Also called indefinite loops:

the loop repeats an indefinite number of iterations until
some condition is met, or while some condition is met.
The loop terminates depending upon conditions
involving sentinel values, Boolean flags, arithmetic
expressions, end of line, or end of file markers.
While and do…while loops are variable condition
loops.

Mr. Dave Clausen 9

The for Loop

The for loop repeats one or more statements a
specified number of times.
A for loop is difficult to read the first time you see
one.
Like an if statement, the for loop uses parentheses.
In the parentheses are three items called
parameters, which are needed to make a for loop
work.
Each parameter in a for loop is an expression.

Mr. Dave Clausen 10

Figure 9-1

Figure 9-1 shows the format of a for loop.

Mr. Dave Clausen 11

The for Loop

General form:
for(<initialization expression>; <termination or control

conditon>; <update or step expression>)
<statement>

for(counter = 1; counter <= 10; counter++)//Loop Heading

cout<< counter << endl; //Loop body

Mr. Dave Clausen 12

Syntax and Semantics of
the for Loop

for (<initializer>; <termination>; <update>)
<statement>

termination

statement

true

false
initializer

update

Loop header Loop body

Mr. Dave Clausen 13

The for Loop Internal Logic

The control variable is assigned an initial
value in the initialization expression
The termination condition is evaluated
If termination condition is true

the body of the loop is executed and the update
expression is evaluated

If the termination condition is false
program control is transferred to the first
statement following the loop.

Mr. Dave Clausen 14

Code List 9-1
// forloop.cpp forloop.txt

include <iostream.h>

int main()
{

int counter ; // counter variable
for (counter = 1; counter <= 3; counter ++)

cout << counter << endl;
return 0;

}

Mr. Dave Clausen 15

Increment Operator

The Increment operator adds 1 to the
variable
Instead of x = x + 1 you can write as + +x

if the + + occurs before the x (+ + x) it is called
a prefix operator
if the + + occurs after the x (x+ +) it is called a
postfix operator

Our text uses the prefix operator
the prefix executes faster on most compilers

Mr. Dave Clausen 16

Decrement Operator

The Decrement operator subtracts 1 from
the variable
Instead of x = x - 1 you can write as --x

if the -- occurs before the x (-- x) it is called a
prefix operator
if the -- occurs after the x (x--) it is called a
postfix operator

Our text uses the prefix operator
the prefix executes faster on most compilers

Mr. Dave Clausen 17

Counting Backward and
Other Tricks
A counter variable can also count backward
by having the step expression decrement the
value rather than increment it.
The program in Code List 9-2 counts
backward from 10 to 1.

The counter is initialized to 10.
With each iteration, the decrement operator
subtracts 1 from the counter.

Mr. Dave Clausen 18

Code List 9-2
// backward.cpp backward.txt

#include <iostream.h>

int main ()
{

int counter ; // counter variable
for(counter = 10; counter >= 0; counter --)

cout << counter << end1;
cout << “”End of loop.\n”;
return 0;

}

Mr. Dave Clausen 19

Code List 9-3

// dblstep.cpp dblstep.txt
#include <iostream.h>

int main ()
{

int counter ; // counter variable
for (counter = 1; counter <= 100; counter = counter + counter)

cout << counter << end1;
return 0;

}

Mr. Dave Clausen 20

Scope of Loop Control Variable

The loop control variable must be declared before it is
used.

The rules for the scope of the variable apply here.

If the variable is only going to be used as a loop counter,
and for nothing else…

You can limit it’s scope by declaring it when it is initialized in
the loop

for(int counter = 1; counter <=10; ++ counter)
cout<< counter <<endl; // counter is only

// referenced in the loop

Mr. Dave Clausen 21

For Loops

For loops can count down (decrement)
for(int counter=20; counter>=15; --counter)

cout<< counter << endl;
For loops can count by factors other than one
for(int counter=2; counter<=10; counter=counter+2)

cout<< counter << endl;
Style

Indent the body of the loop, use blank lines before and
after, and use comments.

Mr. Dave Clausen 22

For Statement Flexibility

The for statement gives you a lot of
flexibility.
As you have already seen, the step
expression can increment, decrement, or
count in other ways.

Mr. Dave Clausen 23

Table 9-1

Some more examples of for statements are
shown in Table 9-1.

Mr. Dave Clausen 24

Accumulator
An accumulator is a variable used to keep a
running total or sum of successive values of
another variable

i.e. sum = sum + grade;
you should initialize the value of the accumulator
before the loop: sum = 0;
the accumulator statement occurs in the body of the
loop

//lcv means loop control variable
sum=0;
for(lcv = 1; lcv <= 100; ++lcv)

sum = sum + lcv;

Mr. Dave Clausen 25

Using a Statement Block in a
for Loop
If you need to include more than one statement in
the loop, place all the statements that are to be part
of the loop inside braces {curly brackets}.
The statements in the braces will be repeated each
time the loop iterates.
The statements that follow the braces are not part of
the loop.
In Code List 9-4, an output statement has been
added inside the loop of the backward.cpp program.
The phrase inside loop will appear with each
iteration of the loop.

Mr. Dave Clausen 26

Code-List 9-4
// backward2.cpp backward2.txt
#include <iostream.h>
int main ()
{

int i; // counter variable
for(i = 10; i >= 0; i--)
{

cout << i << endl;
cout << “Inside Loop\n”;

}
cout << “End of loop.\n”;
return 0;

}

Mr. Dave Clausen 27

Errors with for Loops

Do NOT place a ; (semicolon) directly after
the command for in a for loop:
Don’t do this for example:

for(int i = 1; i <= 10; i ++) ; //Don’t do this!
cout << i << end1;

This will prevent any lines of code within the loop
from being repeated or iterated.
This will result in a logic error, the compiler will
NOT tell you that there is a syntax error.

Mr. Dave Clausen 28

While Loops

A while loop is similar to a for loop.
While loops are sometimes better suited for
many loops other than count controlled
loops.
In a while loop, something inside the loop
triggers the loop to stop.
For example, a while loop may be written to
ask the user to enter a series of numbers
while the number is not –999.

Mr. Dave Clausen 29

The while loop

The while loop repeats a statement or group
of statements as long as a control expression
is true.
Unlike a for loop, a while loop usually does
not use a counter variable.
The control expression in a while loop can
be any valid expression.
The program in Code List 9-5 uses a while
loop to repeatedly divide a number by 2 until
the number is less than or equal to 1.

Mr. Dave Clausen 30

Code List 9-5
// while1.cpp while1.txt
#include <iostream.h>
int main ()
{

float number;
cout << “Please enter the number to divide:”;
cin >> number;
while (number > 1.0)
{

cout << number << endl;
number = number / 2.0;

}
return 0;

}

Mr. Dave Clausen 31

While Loops
General form:
while (<Boolean expression>)

<statement>
The parentheses around the Boolean is
required.
If the condition is true the body of the loop is
executed again.
If the loop condition is false, the program
continues with the first statement after the loop.
A while loop may not be executed… why?

Mr. Dave Clausen 32

Syntax and Semantics of
while Statements

while (<Boolean expression>)
<statement>

while (<Boolean expression>)
{

<statement 1>
.
<statement n>

}

?

statement

true

false

Mr. Dave Clausen 33

While Loops: Discussion
The condition can be any valid Boolean
Expression
The Boolean Expression must have a value
PRIOR to entering the loop.
The body of the loop can be a compound
statement or a simple statement.
The loop control condition needs to change in the
loop body

If the condition is true and the condition is not changed
or updated, an infinite loop could result.
If the condition is true and never becomes false, this
results in an infinite loop also.

Mr. Dave Clausen 34

While Tests Before the Loop

In a while loop, the control expression is
tested before the statements in the loop
begin.
Figure 9-3 shows a flowchart of the program
in Code List 9-5.
If the number provided by the user is less
than or equal to 1, the statements in the loop
are never executed.

Mr. Dave Clausen 35

Figure 9-3

Mr. Dave Clausen 36

Figure 9-4
Comparison of a for loop with a while loop to
accomplish the same task in a count controlled
loop.

Mr. Dave Clausen 37

The while Loop Accumulator

Write code that computes the sum of the
numbers between 1 and 10.

int counter = 1;
int sum = 0;
while (counter <= 10)
{

sum = sum + counter;
counter = counter + 1;

}

Mr. Dave Clausen 38

Sentinel Values and Counters

Sentinel Value
A value that determines the end of a set of data,
or the end of a process in an indefinite loop.

P309ex1.cpp P309ex1.txt
While loops may be repeated an indefinite
number of times.

It is common to count the number of times the loop
repeats.
Initialize this “counter” before the loop
Increment the counter inside the loop

Mr. Dave Clausen 39

Errors with while Loops
Do NOT place a ; (semicolon) directly after the
command while in a while loop:

int counter = 1;
while(counter <= 10) ; //Don’t do this!
{

cout << counter << end1;
counter ++;

}
This will prevent any lines of code within the loop from
being repeated or iterated.
This will result in a logic error, the compiler will NOT tell
you that there is a syntax error.
This could also result in an infinite loop.

Mr. Dave Clausen 40

The do while Loop

The last iteration structure in C++ is the do
while loop.
A do while loop repeats a statement or group
of statements as long as a control expression
is true that is checked at the end of the loop.
Because the control expression is tested at
the end of the loop, a do while loop is
executed at least one time.
Code List 9-6 shows and example of a do
while loop.

Mr. Dave Clausen 41

Code List 9-6
// dowhile.cpp dowhile.txt
#include <iostream.h>
int main ()
{

double number, squared;
do
{

cout << “Enter a number (Enter -999 to quit):”;
cin >> number;
squared = number * number;
cout << number << “squared is “ << squared << endl;

}while (number!= -999);
return 0;

}

Mr. Dave Clausen 42

do…while loops
General form:
do
{

<statement>
}while (<Boolean expression>);

The Boolean expression must have a value before it is
executed at the end of the loop.
If the loop condition is true, control is transferred back
to the top of the loop.
If the loop condition is false, the program continues
with the first statement after the loop.
A do...while loop will always be executed at least
once… why?

Mr. Dave Clausen 43

Syntax and Semantics of
do…while Statements

do
{

<statement>
}while (<Boolean expression>);

do
{

<statement 1>
.
<statement n>

} while (<Boolean expression>);

statement

false

?
true

Mr. Dave Clausen 44

♦ The condition can be any valid Boolean
Expression

♦ The Boolean Expression must have a value PRIOR
to exiting the loop.

♦ The body of the loop is treated as a compound
statement even if it is a simple statement. { }

♦ The loop control condition needs to eventually
change to FALSE in the loop body

♦ If the condition never becomes false, this results in an
infinite loop.

do…while Loops: Discussion

Mr. Dave Clausen 45

Errors with do while Loops
Do NOT place a ; (semicolon) directly after
the command do in a do while loop:

int counter = 1;
do; //Don’t do this!
{

cout << counter << end1;
counter ++;

} while(counter <= 10);

This will result in a syntax error.

Mr. Dave Clausen 46

Comparing while with do while

To help illustrate the difference between a
while and a do while loop, compare the two
flowcharts in figure 9-5.
Use a while loop when you need to test the
control expression before the loop is
executed the first time.
Use a do while loop when the statements in
the loop need to be executed at least once.

Mr. Dave Clausen 47

Figure 9-5
Pretest vs. Post Test indefinite loops.

Mr. Dave Clausen 48

Choosing which loop to use.
for loop

when a loop is to be executed a predetermined
number of times.

while loop
a loop repeated an indefinite number of times
check the condition before the loop
a loop that might not be executed (reading data)

do...while
a loop repeated an indefinite number of times
check the condition at the end of the loop

Mr. Dave Clausen 49

Designing Correct Loops

Initialize all variables properly
Plan how many iterations, then set the counter
and the limit accordingly

Check the logic of the termination condition

Update the loop control variable properly

Mr. Dave Clausen 50

Off-by-One Error
int counter = 1;
while (counter <= 10)
{ // Executes 10 passes

<do something>
counter++;

}

int counter = 1;
while (counter < 10)
{ // Executes 9 passes

<do something>
counter++;

}

Mr. Dave Clausen 51

Infinite Loop
int counter = 1;
while (counter <= 10)
{ // Executes 5 passes

<do something>
counter = counter + 2;

}

int counter = 1;
while (counter != 10)
{ //Infinite Loop

<do something>
counter = counter + 2;

}

In general, avoid using != in loop termination conditions.

Mr. Dave Clausen 52

Error Trapping

//”primed” while loop
cout<<"Enter a score between ”<<low_double<<“ and “<<high_double;
cin>>score;
while((score < low_double) || (score > high_double))
{

cout<<“Invalid score, try again.”;

//update the value to be tested in the Boolean Expression

cout<<"Enter a score between ”<<low_double<<“ and
“<<high_double;
cin>>score;

}

Mr. Dave Clausen 53

break and continue

For this class do not use a break statement
to terminate a loop.
Only use break statements in a switch
structure.
Do not use continue in a loop either.
Instead, use compound Boolean expressions
to terminate loops.

Mr. Dave Clausen 54

Preferred Code List 9-7
// dowhilenobreak.cpp dowhilenobreak.txt
#include <iostream.h>
int main()
{

double num, squared;
do
{

cout << "Enter a number (Enter 0 to quit): ";
cin >> num;
if (num != 0.0)
{

squared = num * num;
cout << num << " squared is " << squared << endl;

}
}while (num!=0);

return 0;
}

Mr. Dave Clausen 55

Code List 9-7 using while
// whilenobreak.cpp whilenobreak.txt
#include <iostream.h>
int main()
{

double num, squared;
cout << "Enter a number (Enter 0 to quit): ";
cin >> num;
while (num!=0)
{

squared = num * num;
cout << num << " squared is " << squared << endl;
cout << "Enter a number (Enter 0 to quit): ";
cin >> num;

}
return 0;
}

Mr. Dave Clausen 56

Nested Loops

Nested loop
when a loop is one of the statements within the
body of another loop.

for (k=1; k<=5; ++k)
for (j=1; j<=3; ++j)

cout<<(k+j)<<endl;
Each loop needs to have its own level of indenting.
Use comments to explain each loop
Blank lines around each loop can make it easier to
read

Multab.cpp

Multab.txt

Mr. Dave Clausen 57

Code List 9-9
//nestloop.cpp nestloop.txt
#include <iostream.h>
int main()
{

int i,j;
cout << "BEGIN\n";
for(i = 1; i <= 3; i++)
{

cout << " Outer loop: i = " << i << endl;
for(j = 1; j <= 4; j++)

cout << " Inner loop: j = " << j << endl;
}
cout << "END\n";
return 0;

}

Mr. Dave Clausen 58

Repetition and Selection

The use of an if statement within a loop to
look for a certain condition in each iteration
of the loop.

Examples:
to generate a list of Pythagorean Triples
to perform a calculation for each employee
to find prime numbers

let’s look at our Case Study program for Chapter 6

primes.cpp primes.txt

	Unit 3 Lesson 9�Repetition Statements �(Loops)
	Introduction to Loops
	Repetition Statements
	Repetition Forms
	Pretest Loops
	Post Test Loops
	Fixed repetition loops
	Variable Condition Loops
	The for Loop
	Figure 9-1
	The for Loop
	Syntax and Semantics of�the for Loop
	The for Loop Internal Logic
	Code List 9-1
	Increment Operator
	Decrement Operator
	Counting Backward and Other Tricks
	Code List 9-2
	Code List 9-3
	Scope of Loop Control Variable
	For Loops
	For Statement Flexibility
	Table 9-1
	Accumulator
	Using a Statement Block in a for Loop
	Code-List 9-4
	Errors with for Loops
	While Loops
	The while loop
	Code List 9-5
	While Loops
	Syntax and Semantics of�while Statements
	While Loops: Discussion
	While Tests Before the Loop
	Figure 9-3
	Figure 9-4
	The while Loop Accumulator
	Sentinel Values and Counters
	Errors with while Loops
	The do while Loop
	Code List 9-6
	do…while loops
	Syntax and Semantics of�do…while Statements
	Errors with do while Loops
	Comparing while with do while
	Figure 9-5
	Choosing which loop to use.
	Designing Correct Loops
	Off-by-One Error
	Infinite Loop
	Error Trapping
	break and continue
	Preferred Code List 9-7
	Code List 9-7 using while
	Nested Loops
	Code List 9-9
	Repetition and Selection

