Unit 3 Lesson 9
Repetition Statements
(Loops)

Mr. Dave Clausen
La Canada High School

Introduction to Loops

¢ We all know that much of the work a
computer does Is repeated many times.

¢ \When a program repeats a group of
statements a given number of items, the
repetition iIs accomplished using a loop.

< This will be our third category of structures:
Iteration structures.

¢ Loops are iteration structures.

¢ Each loop or pass through a group of
statements Is called an iteration.

Mr. Dave Clausen 2

Repetition Statements

< Our third control structure: iteration or
repetition (completes our three control
structures: seguence, selection, Iteration)

¢ Two malin categories of repetition:
< definite loop
o repeats a predetermined number of times

< indefinite loop

& repeats a number of times that has not been
predetermined.

Mr. Dave Clausen

Repetition Forms

¢ Three loop types:
o for<a definite number of times> <do action>
¢ While<condition is true> <do action>
o do<action> while <condition is true>

¢ Three basic constructs
o A variable is assigned some value.

+ The value of the variable changes at some point in the
loop.

+ The loop repeats until the variable reaches a
predetermined value, the program then executes the
next statement after the loop.

Mr. Dave Clausen

Pretest Loops

¢ Pretest Loop (Entrance Controlled Loops)

¢ a loop where the control
expression) Is tested BE

¢ If the condition Is true, t

condition (Boolean
~ORE the loop.

ne loop Is executed.

¢ If the condition Is false t

ne loop Is not executed

& Therefore, it Is possible that these loops may not

be executed at all (when

the condition Is False)

There are two pretest loops

o for loop
+ While loop

Mr. Dave Clausen 5

Post Test Loops

& Post Test Loops (exit-controlled loop)

¢ a loop where the control condition (Boolean
expression) Is tested AFTER the loop has been
executed.

¢ If the condition Is true, the loop Is executed again.

¢ If the condition Is false the loop Is not executed
again.

¢ Therefore, this type of loop will always be
executed at least once.

¢ There Is one post test loop: do...while

Mr. Dave Clausen 6

Fixed repetition loops

¢ Fixed repetition loop

< a loop used when you know In advance how
many repetitions need to be executed, or when
you ask the user how many repetitions are
needed.

¢ also known as a definite loop:

+ The programmer knows, or the user chooses the
definite number of repetitions necessary to solve the
problem.

< the “for” loop Is:
¢ a fixed repetition loop
o and a pretest loop

Mr. Dave Clausen 7

Variable Condition Loops

< Variable Condition Loops

¢ needed to solve problems where the conditions
change within the body of the loop.

¢ Also called indefinite loops:

+ the loop repeats an indefinite number of iterations until
some condition is met, or while some condition IS met.

+ The loop terminates depending upon conditions
Involving sentinel values, Boolean flags, arithmetic
expressions, end of line, or end of file markers.

o While and do...while loops are variable condition
loops.

Mr. Dave Clausen 8

The for Loop

¢ The for loop repeats one or more statements a
specified number of times.

¢ A for loop is difficult to read the first time you see
one.

¢ Like an If statement, the for loop uses parentheses.

¢ In the parentheses are three items called
parameters, which are needed to make a for loop
work.

& Each parameter in a for loop Is an expression.

Mr. Dave Clausen 9

FIGURE 9-
A for loop repeats one or more statements a specified number of times

for (initializing expression; control expression; step expression)
{ statements to execute }

The for Loop

& General form:

for(<initialization expression> <termination or control
conditon> <update or step expression>)

<Statement>

for(counter = 1; counter <= 10; counter++)//Loop Heading
cout<< counter << endl; //Loop body

Mr. Dave Clausen 11

update

The for Loop Internal Logic

¢ The control variable Is assigned an initial
value In the initialization expression

& The termination condition Is evaluated

¢ If termination condition IS true

< the body of the loop Is executed and the update
expression is evaluated

& If the termination condition is false

< program control is transferred to the first
statement following the loop.

Mr. Dave Clausen 13

I

include <iostream.h>

Int main()

{

Int counter ; // counter variable
for (counter = 1; counter <= 3; counter ++)
cout << counter << endl:

Increment Operator

¢ The Increment operator adds 1 to the
variable
¢ Instead of X = x + 1 you can write as + +Xx

< if the + + occurs before the x (+ + X) 1t Is called
a prefix operator

¢ If the + + occurs after the x (x+ +) it Is called a
postfix operator

¢ Our text uses the prefix operator
« the prefix executes faster on most compilers

Mr. Dave Clausen 15

Decrement Operator

¢ The Decrement operator subtracts 1 from
the variable
¢ Instead of X = x - 1 you can write as --X

& If the -- occurs before the x (-- X) i1t is called a
prefix operator

& If the -- occurs after the x (x--) it Is called a
postfix operator

¢ Our text uses the prefix operator
« the prefix executes faster on most compilers

Mr. Dave Clausen 16

Counting Backward and
Other Tricks

¢ A counter variable can also count backward
by having the step expression decrement the
value rather than increment It.

¢ The program in Code List 9-2 counts
backward from 10 to 1.

& The counter is initialized to 10.

& With each Iteration, the decrement operator
subtracts 1 from the counter.

Mr. Dave Clausen 17

Il

#include <iostream.h>

Int main ()

{

Int counter ; // counter variable

for(counter = 10; counter >= 0; counter --)
cout << counter << end1;

cout << “”’End of loop.\n”;

/l
#include <iostream.h>

Int main ()

{

Int counter ; // counter variable

for (counter = 1; counter <= 100; counter = counter + counter)
cout << counter << end1;

return O;

Scope of Loop Control Variable

¢ The loop control variable must be declared before it Is
used.

¢ The rules for the scope of the variable apply here.

¢ If the variable Is only going to be used as a loop counter,
and for nothing else...

¢ You can limit it’s scope by declaring it when it is initialized in
the loop

for(int counter = 1; counter <=10; ++ counter)

cout<< counter <<endl; // counter is only
// referenced in the loop

Mr. Dave Clausen 20

For Loops

¢ For loops can count down (decrement)
for(int counter=20; counter>=15; --counter)
cout<< counter << endl;

¢ For loops can count by factors other than one
for(int counter=2; counter<=10; counter=counter+2)
cout<< counter << endl;

& Style

+ Indent the body of the loop, use blank lines before and
after, and use comments.

Mr. Dave Clausen 21

For Statement Flexibility

¢ The for statement gives you a lot of
flexibility.
¢ As you have already seen, the step

expression can increment, decrement, or
count in other ways.

Mr. Dave Clausen 22

*

TABLE 9-
Examples of for statements

FOR STATEMENT COUNT PROGRESSION

=1 = il b & o - A i
| E T . L |

for(i=1;i<10;i=i+2)

Accumulator

¢ An accumulator Is a variable used to keep a
running total or sum of successive values of
another variable

&l.. sum =sum + grade;

o you should initialize the value of the accumulator
before the loop: sum =0;

+ the accumulator statement occurs in the body of the
loop

//lcv means loop control variable

sum=0;

for(lcv = 1; lcv <= 100; ++lcv)
sum = sum + lcv;

Mr. Dave Clausen 24

Using a Statement Block In a
for Loop

< If you need to include more than one statement in
the loop, place all the statements that are to be part
of the loop Inside braces {curly brackets}.

¢ The statements in the braces will be repeated each
time the loop Iterates.

¢ The statements that follow the braces are not part of
the loop.

¢ In Code List 9-4, an output statement has been
added inside the loop of the backward.cpp program.

¢ The phrase inside loop will appear with each
Iteration of the loop.

Mr. Dave Clausen 25

/]

#include <iostream.h>

int main ()

{
Int 1; // counter variable
for(1=10;i>=0;1i--)
{

cout << i << endl;
cout << “Inside Loop\n”;

}

cout << “End of loop.\n”;

Errors with for Loops

¢ Do NO

place a (semicolon) directly after

the command for in a for loop:
¢ Don’t do this for example:
for(inti=1;1<=10; 1 ++)
cout << | << end1;

¢ This will prevent any lines of code within the loop
from being repeated or iterated.

¢ This will result in a logic error, the compiler will
NOT tell you that there is a syntax error.

Mr. Dave Clausen 27

While Loops

¢ A while loop Is similar to a for loop.

¢ While loops are sometimes better suited for
many loops other than count controlled
loops.

¢ In a while loop, something inside the loop
triggers the loop to stop.

¢ For example, a while loop may be written to
ask the user to enter a series of numbers
while the number i1s not —999.

Mr. Dave Clausen 28

The while loop

¢ The while loop repeats a statement or group
of statements as long as a control expression
IS true.

¢ Unlike a for loop, a while loop usually does
not use a counter variable.

¢ The control expression in a while loop can
be any valid expression.

¢ The program in Code List 9-5 uses a while
loop to repeatedly divide a number by 2 until
the number is less than or equal to 1.

Mr. Dave Clausen 29

/!
#include <iostream.h>
int main ()

{

float number;
cout << “Please enter the number to divide:”;
cin >> number;
while (number > 1.0)
{
cout << number << endl;
number = number / 2.0;

}

While Loops

¢ General form:
while (<Boolean expression>)
<statement>

¢ The parentheses around the Boolean is
required.

¢ If the condition Is true the body of the loop Is
executed again.

¢ If the loop condition is false, the program
continues with the first statement after the loop.

¢ A while loop may not be executed... why?

Mr. Dave Clausen 31

Syntax and Semantics of
whi e Statements

while (<Boolean expression>)

<statement>

while (<Boolean expression>)

{

}

<statement 1>

<statement n>

Mr. Dave Clausen

true

false

statement

32

While Loops: Discussion

¢ The condition can be any valid Boolean
Expression

o1
P

L Al

ne Boolean Expression must have a value
RIOR to entering the loop.

ne body of the loop can be a compound

statement or a simple statement.

¢ The loop control condition needs to change In the
loop body

o If the condition is true and the condition is not changed

or updated, an infinite loop could result.

¢ If the condition is true and never becomes false, this

results in an infinite loop also.

Mr. Dave Clausen 33

While Tests Before the Loop

< In a while loop, the control expression Is
tested before the statements in the loop
begin.

¢ Figure 9-3 shows a flowchart of the program
In Code List 9-5.

¢ If the number provided by the user is less
than or equal to 1, the statements in the loop
are never executed.

Mr. Dave Clausen 34

*

l -
A while loop tests the control expression before the loop begins.

Accept floating-
point number
from user.

Is .
number >1.07? Print number to screen. Divide number by 2.

Although both of these programs produce the sam
output, the for loop gives a more efficient solution.

#include <iostream.h> #include <iostream.h>

int main() int main()
{ {
int j: int j:
for(j = 1; j <= 3; jt++) jo=1;
{ cout << j << endl; } while(j <= 3)
return 0; {

cout << j << endl;
J++;
b

return 0;

Iint counter = 1;

int sum = O;

while (counter <= 10)

{
sum = sum + counter;
counter = counter + 1;

}

Sentinel Values and Counters

¢ Sentinel VValue

¢ A value that determines the end of a set of data,
or the end of a process in an indefinite loop.

¢ While loops may be repeated an indefinite
number of times.

o It Is common to count the number of times the loop
repeats.

o Initialize this “counter” before the loop
+ Increment the counter inside the loop

Mr. Dave Clausen 38

Errors with while Loops

¢ Do NOT place a (semicolon) directly after the
command while in a while loop:

INnt counter = 1;
while(counter <= 10)

cout << counter << endl;
counter ++:

}

¢ This will prevent any lines of code within the loop from
being repeated or iterated.

¢ This will result in a logic error, the compiler will NOT tell
you that there is a syntax error.

¢ This could also result in an infinite loop.

Mr. Dave Clausen 39

The do while Loop

¢ The last 1teration structure in C++ 1s the do
while loop.

¢ A do while loop repeats a statement or group
of statements as long as a control expression
IS true that Is checked at the end of the loop.

¢ Because the control expression is tested at
the end of the loop, a do while loop is
executed at least one time.

¢ Code List 9-6 shows and example of a do
while loop.

Mr. Dave Clausen 40

I/
#include <iostream.h>
int main ()
{
double number, squared,;
do
{
cout << “Enter a number (Enter -999 to quit):”;
cin >> number;
squared = number * number;
cout << number << “squared is “ << squared << endl;
}while (number!=-999);

do...while loops

& General form:
do
{
<Statement>

Ywhile (<Boolean expression>);

+ The Boolean expression must have a value before it is
executed at the end of the loop.

¢ If the loop condition is true, control is transferred back
to the top of the loop.

o If the loop condition is false, the program continues
with the first statement after the loop.

o A do...while loop will always be executed at least
once... why?

Mr. Dave Clausen 42

Syntax and Semantics of
do...whi le Statements

do
{

<statement>
ywhile (<Boolean expression>);

do
{

<statement 1>

<statement n>

+ while (<Boolean expression>);

Mr. Dave Clausen

¥ statement

true
false

43

do...while Loops: Discussion

+ The condition can be any valid Boolean
EXxpression

+ The Boolean Expression must have a value PRIOR
to exiting the loop.

+ The body of the loop is treated as a compound
statement even If it is a simple statement. { }

+ The loop control condition needs to eventually
change to FALSE in the loop body

« If the condition never becomes false, this results in an
Infinite loop.

Mr. Dave Clausen 44

Errors with do while Loops

¢ Do NOT place a (semicolon) directly after
the command do in a do while loop:

Int counter = 1;
do
{

cout << counter << endl1;
counter ++:
} while(counter <= 10);

¢ This will result in a syntax error.

Mr. Dave Clausen 45

Comparing while with do while

¢ To help illustrate the difference between a
while and a do while loop, compare the two
flowcharts in figure 9-5.

¢ Use a while loop when you need to test the
control expression before the loop Is
executed the first time.

¢ Use a do while loop when the statements In
the loop need to be executed at least once.

Mr. Dave Clausen 46

FIGURE 9-5
The difference between a while loop and a do while
loop is where the control expression is tested.

statements
in loop

non-zero
control statements control
expression in loop expression

while loop do while loop

Choosing which loop to use.

¢ for loop

¢ when a loop Is to be executed a predetermined
number of times.

¢ while loop
¢ a loop repeated an indefinite number of times
check the condition before the loop
< a loop that might not be executed (reading data)

¢ do...while
¢ a loop repeated an indefinite number of times
+ check the condition at the end of the loop

Mr. Dave Clausen 48

Designing Correct Loops

¢ Initialize all variables properly

¢ Plan how many iterations, then set the counter
and the limit accordingly

¢ Check the logic of the termination condition

¢ Update the loop control variable properly

Mr. Dave Clausen 49

int counter = 1;

while (counter < 10)

{ // Executes 10 passes
<do something>
counter++;

}

while (counter <= 10)

{ // Executes 5 passes
<do something>
counter = counter + 2;

}

Error Trapping

/I”primed” while loop

cout<<"Enter a score between "<<low_ double<<* and “<<high_double;
cin>>score;

while((score < low_double) || (score > high_double))

{
cout<<*Invalid score, try again.”;

/[/update the value to be tested in the Boolean Expression

cout<<"Enter a score between "<<low_double<<* and
“<<high_double;

cin>>score;

Mr. Dave Clausen 52

break and continue

& For this class do not use a break statement
to terminate a loop.

¢ Only use break statements In a switch
structure.

¢ Do not use continue in a loop either.

¢ Instead, use compound Boolean expressions
to terminate loops.

Mr. Dave Clausen 53

dowhilenobreak.cpp dowhilenobreak.txt
#include <iostream.h>
int main()
{
double num, squared,;
do
{
cout << "Enter a number (Enter 0 to quit): ";
cin >> num;
if (num !'=0.0)
{
squared = num * num;
cout << num << " squared is " << squared << endl,

)

Il
#include <iostream.h>
int main()
{
double num, squared,;
cout << "Enter a number (Enter 0 to quit): ";
cin >> num;
while (num!=0)
{
squared = num * num;
cout << num << " squared is " << squared << endl;
cout << "Enter a number (Enter 0 to quit): ";
cin >> num;

Nested Loops

¢ Nested loop

¢ when a loop Is one of the statements within the
body of another loop.
for (k=1; k<=5; ++k)
for (j=1; j<=3; ++))
cout<<(k+j)<<endl,
o Each loop needs to have its own level of indenting.

& Use comments to explain each loop

+ Blank lines around each loop can make It easier to
read

Mr. Dave Clausen 56

#include <iostream.h>
int main()
{
inti,j;
cout << "BEGIN\n";
for(i=1;1<=3;i++)

{
cout << Outer loop: 1 =" << i << endl;
for(j =1;) <=4, j++)
cout<<™ Inner loop: j =" <<j <<endl,
by

cout << "END\n":

Repetition and Selection

¢ The use of an If statement within a loop to
look for a certain condition In each Iteration
of the loop.
¢ Examples:
o to generate a list of Pythagorean Triples

o to perform a calculation for each employee

o to find prime numbers
o let’s look at our Case Study program for Chapter 6

Mr. Dave Clausen 58

	Unit 3 Lesson 9�Repetition Statements �(Loops)
	Introduction to Loops
	Repetition Statements
	Repetition Forms
	Pretest Loops
	Post Test Loops
	Fixed repetition loops
	Variable Condition Loops
	The for Loop
	Figure 9-1
	The for Loop
	Syntax and Semantics of�the for Loop
	The for Loop Internal Logic
	Code List 9-1
	Increment Operator
	Decrement Operator
	Counting Backward and Other Tricks
	Code List 9-2
	Code List 9-3
	Scope of Loop Control Variable
	For Loops
	For Statement Flexibility
	Table 9-1
	Accumulator
	Using a Statement Block in a for Loop
	Code-List 9-4
	Errors with for Loops
	While Loops
	The while loop
	Code List 9-5
	While Loops
	Syntax and Semantics of�while Statements
	While Loops: Discussion
	While Tests Before the Loop
	Figure 9-3
	Figure 9-4
	The while Loop Accumulator
	Sentinel Values and Counters
	Errors with while Loops
	The do while Loop
	Code List 9-6
	do…while loops
	Syntax and Semantics of�do…while Statements
	Errors with do while Loops
	Comparing while with do while
	Figure 9-5
	Choosing which loop to use.
	Designing Correct Loops
	Off-by-One Error
	Infinite Loop
	Error Trapping
	break and continue
	Preferred Code List 9-7
	Code List 9-7 using while
	Nested Loops
	Code List 9-9
	Repetition and Selection

