
Graphics Applets

By

Mr. Dave Clausen

2

Applets

 A Java application is a stand-alone program with a main method

 A Java applet is a program that is intended to transported over

the Web and executed using a web browser

 An applet also can be executed using the Applet Viewer tool of

the Java Software Development Kit

 An applet doesn't have a main method

 Instead an applet uses public void init()method

 Applets can contain:

• Methods you define

• Variables and constants

• Decisions, loops, and arrays

3

Create an Applet

 Use JCreator to create the java and html files

• Write applet source code in Java

 Save with .java file extension

• Compile applet into bytecode

• Write HTML document

 Save with .html or .htm file extension

 Include a statement to call the compiled Java class (.class)

 To “run” the applet in JCreator

• Compile the java code

• Execute the html code to view the applet in the Applet Viewer

 Or load HTML document into a Web browser
• When you make changes, save the java code, recompile the java

code, and refresh the browser. (LCUSD has this blocked at school.)

4

Inheritance and bytecode

 The class that defines an applet extends the Applet

class

 This makes use of inheritance.

 An applet is embedded into an HTML file using a tag

that references the bytecode (.class) file of the applet

class

 The bytecode version of the program is transported

across the web and executed by a Java interpreter

that is part of the browser

5

HTML Comments

Comments begin with <!- - (no spaces between)

Comments end with - ->
<!--**

* *

* Mr. Clausen 9999 *

* *

* Program Move Circle Applet Animation *

* *

* AP Computer Science Java Period ? *

* *

* Starting Date: 5/?/200? Due Date: 5/?/200? *

* *

* This program will animate a circle in a Java Applet *

* Don't forget to include comments describing your applet and *

* what exactly it does. *

**-->

6

HTML Template & applet Tag

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<title>YourLastName FirstName ID# Final Project</title>

</head>

<body>

<center> <h3>YourLastName FirstName ID# Final Project</h3>

<applet code=“LastNameFirstNameFP.class"

width=760 height=520>

</applet>

</center>

</body>

</html>

An HTML Template For Graphics Programs

HTMLTemplateFinalProject.html

7

Applet Class Methods

 Our Java Source code public class needs to

include extends Applet (for example)

• public class MoveCircle extends Applet

 Applet class methods Inherited from the Applet Class

• Automatically Invoked by the Web browser when the browser runs
the applet

• These methods don’t have to be included in your applet unless you
wish to override the methods in the parent class.

• public void init() //use this method

• public void start()

• public void stop()

• public void destroy()

8

Applet method Execution

 init() method
• Executes when a Web page containing an Applet is loaded

• Or when running appletviewer command

 start()method
• Executes after init() method

• Executes again every time the applet becomes active after it has
been inactive

 stop() method

• Invoked when user leaves Web page

 destroy()method

• Called when user closes browser or Applet Viewer

• Releases any resources Applet might have allocated

9

Applet Life Cycle

10

Overriding applet Methods

 Overriding a method means
• Replace original version (the inherited version)

 Advanced programmers may choose to override the
stop () and destroy () methods

• We will not override them

 We will override the init () method

• To resize our applet

• To set the background color

• For example:

public void init()

{

//Set the size of the applet panel

resize(760, 520);

setBackground (Color.white);

}

11

Additional Applet Methods

There are nearly 200 additional methods
• Manipulate components within Japplets or Applets

• We are not using applet components in our programs

• Components include
 Buttons

 Labels and

 Text Fields

• Read definitions at http://java.sun.com Web site

12

Applet paint Method

 There are several other special methods that serve specific purposes in
an applet.

 The paint method, for instance, is executed automatically and is used
to draw the applet’s contents

 The paint method accepts a parameter that is an object of the
Graphics class

• public void paint(Graphics g)

 A Graphics object defines a graphics context on which we can draw
shapes and text

 The Graphics class has several methods for drawing shapes

13

paint()Method

paint() method

• Runs when Java displays the applet

• We will write our own method to override the default
method

• Executes automatically every time someone
 Minimizes, maximizes, or resizes Applet Viewer window or browser

window

• Method header

public void paint(Graphics g)

14

Drawing Shapes

 Let's explore some of the methods of the Graphics class
that draw shapes in more detail

 A shape can be filled or unfilled, depending on which method
is invoked

 The method parameters specify coordinates and sizes

 Recall that the Java coordinate system has the origin in the
top left corner

 Shapes with curves, like an oval, are usually drawn by
specifying the shape’s bounding rectangle

 An arc can be thought of as a section of an oval

15

Coordinate Systems

 Each pixel can be identified using a two-dimensional
coordinate system

 When referring to a pixel in a Java program, we use a
coordinate system with the origin in the top-left corner

Y-axis Maximum 519

X-axis Maximum: 759(0, 0)

(112, 40)

112

40

(759,519)

16

Drawing a Line

X

Y

10

20

150

45

g.drawLine (10, 20, 150, 45);

g.drawLine (150, 45, 10, 20);

or

17

Drawing a Rectangle

X

Y

g.drawRect (50, 20, 100, 40);

50

20

100

40

18

Drawing an Oval

X

Y

g.drawOval (175, 20, 50, 80);

175

20

50

80

bounding
rectangle

19

Drawing a Polygon

 drawPolygon(int[] xPoints, int[] yPoints, int nPoints)
• Draws a closed polygon defined by arrays of x and y coordinates.

 fillPolygon(int[] xPoints, int[] yPoints, int nPoints)
• Fills a closed polygon defined by arrays of x and y coordinates.

 fillPolygon example
• HTML file

• Java file

public class DrawPolygon extends Applet {

. . .

public void paint (Graphics g) {
int[] xPoints = {10, 80, 10, 10};

int[] yPoints = {120, 160, 200, 120};

g.setColor (Color.orange);

g.fillPolygon (xPoints,yPoints,4);

}

Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmldrawPolygon(int[], int[], int)
Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmlfillPolygon(int[], int[], int)
DrawPolygon.htm
DrawPolygon.java

20

Shape Methods Summary

clearRect(int x, int y, int width, int height)

Clears the specified rectangle by filling it with the background color of the current drawing surface.

draw3DRect(int x, int y, int width, int height, boolean raised)

Draws a 3-D highlighted outline of the specified rectangle.

drawArc(int x, int y, int width, int height, int startAngle, int arcAngle)

Draws the outline of a circular or elliptical arc covering the specified rectangle.

drawLine(int x1, int y1, int x2, int y2)

Draws a line, using the current color, between the points (x1, y1) and (x2, y2) in this graphics context's

coordinate system.

drawOval(int x, int y, int width, int height)

Draws the outline of an oval.

drawPolygon(int[] xPoints, int[] yPoints, int nPoints)

Draws a closed polygon defined by arrays of x and y coordinates.

drawPolygon(Polygon p)

Draws the outline of a polygon defined by the specified Polygon object.

drawRect(int x, int y, int width, int height)

Draws the outline of the specified rectangle.

drawRoundRect(int x, int y, int width, int height, int arcWidth, int arcHeight)

Draws an outlined round-cornered rectangle using this graphics context's current color.

drawString(String str, int x, int y)

Draws the text given by the specified string, using this graphics context's current font and color.

Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmlclearRect(int, int, int, int)
Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmldraw3DRect(int, int, int, int, boolean)
Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmldrawArc(int, int, int, int, int, int)
Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmldrawLine(int, int, int, int)
Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmldrawOval(int, int, int, int)
Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmldrawPolygon(int[], int[], int)
Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmldrawPolygon(java.awt.Polygon)
Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtPolygon.html
Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmldrawRect(int, int, int, int)
Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmldrawRoundRect(int, int, int, int, int, i
Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmldrawString(java.lang.String, int, int)
Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavalangString.html

21

Shape Methods Summary 2

drawString(String str, int x, int y)

Draws the text given by the specified string, using this graphics context's current font and color.

fill3DRect(int x, int y, int width, int height, boolean raised)

Paints a 3-D highlighted rectangle filled with the current color.

fillArc(int x, int y, int width, int height, int startAngle, int arcAngle)

Fills a circular or elliptical arc covering the specified rectangle.

fillOval(int x, int y, int width, int height)

Fills an oval bounded by the specified rectangle with the current color.

fillPolygon(int[] xPoints, int[] yPoints, int nPoints)

Fills a closed polygon defined by arrays of x and y coordinates.

fillPolygon(Polygon p)

Fills the polygon defined by the specified Polygon object with the graphics context's current color.

fillRect(int x, int y, int width, int height)

Fills the specified rectangle.

fillRoundRect(int x, int y, int width, int height, int arcWidth,

int arcHeight)

Fills the specified rounded corner rectangle with the current color.

Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmldrawString(java.lang.String, int, int)
Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavalangString.html
Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmlfill3DRect(int, int, int, int, boolean)
Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmlfillArc(int, int, int, int, int, int)
Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmlfillOval(int, int, int, int)
Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmlfillPolygon(int[], int[], int)
Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmlfillPolygon(java.awt.Polygon)
Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtPolygon.html
Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmlfillRect(int, int, int, int)
Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmlfillRoundRect(int, int, int, int, int, i

22

Drawing Arcs

 drawArc()method arguments

• x-coordinate of upper-left corner of imaginary rectangle that
represents bounds of imaginary circle that contains arc

• y-coordinate of same point

• Width of imaginary rectangle that represents bounds of imaginary
circle that contains arc

• Height of same imaginary rectangle

• Beginning arc position

• Arc angle

 drawArc(int x, int y, int width, int height,

int startAngle, int arcAngle)

• Draws the outline of a circular or elliptical arc covering the specified

rectangle.

Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmldrawArc(int, int, int, int, int, int)

23

Arc Angles

24

fillArc method

fillArc() method

• Creates a solid arc

Two straight lines are drawn from the arc endpoints to
the center of an imaginary circle whose perimeter the
arc occupies.

fillArc(int x, int y, int width,

int height, int startAngle,

int arcAngle)

• Fills a circular or elliptical arc covering the
specified rectangle

Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmlfillArc(int, int, int, int, int, int)

25

Polygons

drawPolygon() method
• Draws complex shapes

• Requires three arguments
An integer array that holds the x-coordinate positions

A second array that holds the corresponding y-
coordinate positions

The number of pairs of points to connect

 drawPolygon(int[] xPoints, int[] yPoints, int nPoints)

• Draws a closed polygon defined by arrays of x and
y coordinates.

Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmldrawPolygon(int[], int[], int)

26

fillPolygon Method

fillPolygon() method

• Draws a solid shape

• The beginning and ending points need to be the
same to “close” the shape.

Therefore, there will be one more set of ordered pairs
than the number of sides you wish to draw.

•fillPolygon(int[] xPoints,

int[] yPoints, int nPoints)

• Fills a closed polygon defined by arrays of x and y coordinates.

Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmlfillPolygon(int[], int[], int)

27

clearRect method

clearRect(int x, int y,

int width, int height)

Clears the specified rectangle by filling it with
the background color of the current drawing
surface.

• Appears empty or “clear”

We can use clearRect to erase individual items
or the entire background scene if your
animation has more than one background
scene.

Java CompilersJava 2 SDK 1.4.1 DocumentationdocsapijavaawtGraphics.htmlclearRect(int, int, int, int)

28

Color

 A Java programmer can control the color of
images by using the Color class.

 The Color class is included in the package
java.awt.

 The Color class provides the class constants
shown in Table 19-2.

 The Graphics class includes two methods for
examining and modifying an image's color (Table
19-3).

29

Color Methods

The Graphics class includes two methods for
examining and modifying an image's color

(Table 19-3)

•Using a predefined color
•g.setColor (Color.red); // red is a method of the color class

30

Color Constants

Table 19-2: Color Class Constants

31

Create Your Own Colors

 Every color can be represented as a mixture of the three
additive primary colors Red, Green, and Blue

 In Java, each color is represented by three numbers
between 0 and 255 that collectively are called an RGB value

 A color is defined in a Java program using an object created
from the Color class

32

The Color Class

 The Color class contains several static predefined colors.

Here are a few of the color constants with their RGB
values.

Object

Color.black

Color.blue

Color.cyan

Color.orange

Color.white

Color.yellow

RGB Value

0, 0, 0

0, 0, 255

0, 255, 255

255, 200, 0

255, 255, 255

255, 255, 0

33

How To Create Your Own Colors

 Java allows the programmer more refined control over
colors by using RGB (red/green/blue) values.

 In this scheme, there are:

256 shades of red

256 shades of green

256 shades of blue

 The programmer "mixes" a new color by selecting an
integer from 0 to 255 for each color and passing these
integers to a Color constructor as follows:

new Color (<int for red>, <int for green>, <int for blue>)

34

Custom Color Examples

 Examples of creating and instantiating custom colors

• Color myGreen = new Color (0, 204, 0);

• Color myPurple = new Color (153, 0, 150);

• Color myBrown = new Color (166, 124, 82);

• Color myOrange = new Color (251, 136, 93);

 Using a predefined color

• g.setColor (Color.red);
// red is a method of the color class

 Using your custom color

• g.setColor (myGreen);

35

The next code segment shows how to create a
random color with RGB values:

// Create a random color from randomly

generated RGB values

int r = (int) (Math.random() * 256);

int g = (int) (Math.random() * 256);

int b = (int) (Math.random() * 256);

Color randomColor = new Color (r, g, b);

Create Random Colors

36

The Color Class

 Every drawing surface has a background color

setBackground (Color.white);

 Every graphics context has a current foreground color

g.setColor (Color.blue);

 Both can be set

 See Snowman.java and Snowman.html

 Before starting animation, experiment with drawing shapes
in a “still life” using Snowman.java as an example in a
“paint” method.

Snowman.java
Snowman.html

37

Text Properties

 A text image has several properties, as shown in
Table 19-8 below.

 These are set by adjusting the color and font
properties of the graphics context in which the
text is drawn.

38

Text Properties

The Font Class
 An object of class Font has three basic

properties:

 a name

 a style

 and a size

 The following code creates one Font object with
the properties Courier bold 12 and another with
the properties Arial bold italic 10:

 Use descriptive names for your fonts when you
instantiate them as illustrated below.

Font courierBold12 = new Font("Courier", Font.BOLD, 12);

Font arialBoldItalic10 = new Font("Arial", Font.BOLD + Font.ITALIC, 10);

39

Text Properties

 The Font constants PLAIN, BOLD, and ITALIC

define the font styles.

 The font size is an integer representing the number
of points, where one point equals 1/72 of an inch.

 The available font names depend on your particular
computer platform.

40

Text Properties

 Table 19-9 lists the principal font methods:

41

Text Properties

Setting the Color and Font Properties of Text

Assume that we want to display the text "Hello world!" in red
with the font Courier bold 14. The following code would do this:

Changing the font and color of a graphics context affects all
subsequent graphics operations in that context but does not
alter the font or color of existing images.

Font courierBold14= new Font ("Courier", Font.BOLD, 14);

g.setColor (Color.red);

g.setFont (courierBold14);

g.drawString ("Hello world!", 100, 100);

42

Applet Methods Review

 In previous examples we've used the paint method of the
Applet class to draw on an applet

 The Applet class has several methods that are invoked

automatically at certain points in an applet's life

 The init method, for instance, is executed only once when

the applet is initially loaded

 The start and stop methods are called when the applet

becomes active or inactive

 The Applet class also contains other methods that

generally assist in applet processing

43

repaint() Method

repaint() method

• We don’t call the paint() method directly.

• We call the repaint() method when the window

needs to be updated, perhaps with new images.

• The repaint() method calls another method named

update() which in turn calls the paint() method.

• Creates Graphics object

44

Animations

 An animation is a series of images that g ives the
appearance of movement (24 frames per second)

 To create the illusion of movement, we use a delay to change
the scene after an appropriate amount of time or to slow
down the speed of the moving object.

 Start by declaring a constant:

 private final int SLEEP_TIME = 10;

45

Animations continued

 Include this code for the delay:

//delay

try

{

Thread.sleep(SLEEP_TIME);

}

catch(InterruptedException e)

{

}

46

Sources

Java Software Solutions
 by Lewis and Loftus
 Addison-Wesley

Fundamentals of Java Second Edition
 by Lambert and Osborne
 South-Western

Java Programming (versions 1, 2, & 4)
 by Joyce Farrell
 Thomson

