
Chapter 3:

Arithmetic,Variables, Input,

Constants, & Library Functions

Mr. Dave Clausen

La Cañada High School

Objectives

• Use data of types int and double in arithmetic

expressions.

• Identify mixed-mode expressions and convert data

to different types when necessary.

• Understand the utilization of memory for storing

data.

• Declare, initialize, and use variables in

expressions, assignment statements, and output

statements.

Mr. Dave Clausen 2

Objectives cont.

• Use the standard input stream and its

operator to get data for a program.

• Declare and use string variables.

• Know how character data are represented in

computer memory.

• Use constants, library functions, and

member functions in programs.

Mr. Dave Clausen 3

Mr. Dave Clausen 4

Integer Arithmetic

• + Addition

• - Subtraction

• * Multiplication

• / Quotient (Integer Division)

• % Remainder (Modulus)

Divisor

mainder
Quotient

DividendDivisor
Re

Mr. Dave Clausen 5

Integer Order Of Operations

• Expressions within parentheses

 nested parentheses: from inside out

• * (multiplication), % (modulus), / (division)

 from left to right

• + (addition), - (subtraction)

 from left to right

Mr. Dave Clausen 6

Integer Arithmetic (Examples)

(3-4)*5 =

3 * (-2) =

17 / 3 =

17 % 3 =

17 / (-3) =

-17 % 7 =

-42+50%17=

-5

-6

5

2

-5

-3

-26

Mr. Dave Clausen 7

Integers

• Stored as binary numbers inside the

computer.

• Integers produce exact answers

• Int_Min and Int_Max

-2,147,483,648 and 2,147,483,647

• Integer Overflow

 a number is too large or too small to store

 no error message

 unpredictable value

Mr. Dave Clausen 8

Real Number Arithmetic

• Type double:

• + Addition

• - Subtraction

• * Multiplication

• / Division

Mr. Dave Clausen 9

Real Number

Order Of Operations

• Expressions within parentheses

 nested parentheses: from inside out

• * (multiplication), / (division)

 from left to right

• + (addition), - (subtraction)

 from left to right

Mr. Dave Clausen 10

Real Number Arithmetic

(Examples)

2.0 * (1.2 - 4.3) =

2.0 * 1.2 - 4.3 =

-12.6 / (3.0 + 3.0) =

3.1 * 2.0 =

-12.6 / 3.0 + 3.0 =

-6.2

-1.9

-2.1

6.2

-1.2

Mr. Dave Clausen 11

Real Numbers

• Bring Calculators to check your math

• Are stored using binary numbers

• Round Off Error

 1.0/3.0 = 0.3333……….

• Underflow

 very small numbers may be stored as zero

0.0000000000000000000123 stored as zero

Mr. Dave Clausen 12

Real Numbers

• Representational errors

 precision of data reduced because of the order

in which operations are performed

 (-45.5 + 45.6) + 0.215 = 0.315

• 0.1 + 0.215 = 0.315

 -45.5 + (45.6 + 0.215) = 0.3

• if three digits of accuracy are the computers limit

• 45.6 + 0.215= 45.815 or 45.8

• -45.5 + 45.8 = 0.3

Mr. Dave Clausen 13

Real Numbers

• Cancellation Error

 lost data due to differences in the precision of

operands

 2 + 0.0005 = 2.0005 but only 2.00 if 3 digits of

precision

 If possible, add all small numbers before

adding to a larger number

 Real Overflow: trying to store very large

numbers

Mr. Dave Clausen 14

Real Number Limits

• DBL_MIN

2.22507e-308

• DBL_MAX

 1.79769e+308

• Number of digits in double: 15

Mr. Dave Clausen 15

Variables

• Memory Location

 storage cell that can be accessed by address

• Variable

 memory location, referenced by identifier,

whose value can be changed during a program

• Constant

 Symbol whose value can’t be changed in the

body of the program

Mr. Dave Clausen 16

Assignment Statements

• A Method of putting values into memory

locations

 <variable name> = <value>;

 <variable name> = <expression>;

• Assignment is made from right to left

• Constants can’t be on left side of statement

• Expression is a Constant or variable or

combination thereof

Mr. Dave Clausen 17

Assignment Statements

• Values on right side not normally changed

• variable and expression must be of

compatible data types (more later)

• Previous value of variable discarded to

make room for the new value

• For now, char, int, and double are

compatible with each other

Mr. Dave Clausen 18

Assignment Examples

• score1 = 72.3;

• score2 = 89.4;

• score3 = 95.6;

• average = (score1 + score2 + score3) / 3.0

 why not divide by 3 instead of 3.0?

Mr. Dave Clausen 19

Compound Assignments

• “Short hand” notation for frequently used

assignments (We will not use these for

readability of our programs.)

Short hand

x += y

x -= y

x *= y

x /= y

x %= y

Longer form

x = x + y

x = x - y

x = x * y

x = x / y

x = x % y

Mr. Dave Clausen 20

Sample Program

Here is a program that prints data about the

cost of three textbooks and calculates the

average price of the books:

BooksDev.cpp

BOOKSDev.cpp

Mr. Dave Clausen 21

Software Engineering

• Self-documenting code

 Code that is written using descriptive

identifiers

• Always use descriptive variable names and

constant names

 Remember: don’t abbreviate identifier names

when possible.

Mr. Dave Clausen 22

Input

• cin (pronounced see-in)

 gets data from keyboard, the standard input stream

 extractor operator >>

• obtain input from standard input stream and direct it to a

variable (extract from stream to variable)

 inserter operator <<

• insert data into standard output stream

 EGG ILL

• Extractor Greater Greater, Inserter Less Less

Mr. Dave Clausen 23

Input

• Data read in from keyboard must match the

type of variable used to store data

• Interactive Input

 enter values from keyboard while the program

is running

 cin causes the program to stop and wait for the

user to enter data from the keyboard

 prompt the user for the data (user friendly)

Mr. Dave Clausen 24

Input: Sample Programs

No prompt for any of the data values:

INPUTDev.cpp

One prompt for each data value (preferred)

TRIPLESDev.cpp

INPUTDev.cpp
TRIPLESDev.cpp

Mr. Dave Clausen 25

Character Data

• Type char

 each char is associated with an integer value

• Collating sequence

 order of character data used by the computer

• Character set

 the character list available

 ASCII (American Standard Code for Information

Interchange) on our systems: page 85

Mr. Dave Clausen 26

ASCII Code

0 1 2 3 4 5 6 7 8 9

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT

1 LF VT FF CR SO SI DLE DC1 DC2 DC3

2 DC4 NAK SYN ETB CAN EM SUB ESC FS GS

3 RS US SP ! " # $ % & `

4 () * + , - . / 0 1

5 2 3 4 5 6 7 8 9 : ;

6 < = > ? @ A B C D E

7 F G H I J K L M N O

8 P Q R S T U V W X Y

9 Z [\] ^ _ ' a b c

10 d e f g h i j k l m

11 n o p q r s t u v w

12 x y z { | } ~ DEL

Mr. Dave Clausen 27

Full ASCII Code Chart

Mr. Dave Clausen 28

Constants

• Symbolic constant: PI

• Literal constant: 3.14

• Constant declaration section

 after Preprocessor Directives

 after “using namespace std;”

 before type definition section, program heading,
and the int main() function.

 Literal constant is assigned to symbolic constant

• const double PI = 3.14;

• Style for constants is ALL_CAPS

Mr. Dave Clausen 29

Rationale for using Constants

• Programs are easier to read

• Easier to change values that are currently fixed

but subject to change in the future

 i.e. STATE_TAX_RATE

 change one line, rather than searching every line

• Programs more reliable

 fewer chances for typos

 compiler will “catch” named constant typos

Mr. Dave Clausen 30

Library Constants

• What are the ranges from minimum to
maximum for the types char, int, double,
etc.?

 # include <limits>;

 # include <cfloat>;

• Varies by computer system

• Here is a test program to display the values

SIZESDev.cpp

SIZESDev.cpp

Mr. Dave Clausen 31

String Variables

• string data type

• Used to store a sequence of characters

• string name; //not initialized

• string fullName = “”; //initialized to empty string

• string myName = “Mr. Clausen”;

Mr. Dave Clausen 32

String Input with >>

• The >> operator ignores leading whitespace

 space, tab, or carriage return

• Then reads nonblank characters

 until next whitespace character

 user is allowed to use backspace or delete

• until next whitespace character

• Upon return or whitespace string is stored

• >> Can’t be used for strings with spaces.

Page 88

PG88EX1CINfullname.CPP

Mr. Dave Clausen 33

String Input with getline

• Getline function

 reads characters, tab, space into string variable

 until newline (‘/n’) char

 the newline char is not stored in the string

variable

 getline (<input stream>, <string variable>);

• getline (cin, name);

 doesn’t ignore leading whitespace characters

Pg88ex2

PG88EX2.CPP

Mr. Dave Clausen 34

Using cin>> before getline

• >> reads and stores up to newline

• getline reads newline as first char of line

• and quits reading at newline

• any string variables in getline are empty

Pg89ex3v2

PG89EX3V2.CPP

Mr. Dave Clausen 35

Solutions for >> before getline

• Use getline (cin, consume_newline) to

consume newline character

• This is the required method, for example:

P89ex5

PG89EX5.CPP

Mr. Dave Clausen 36

More on strings

• Length function returns number of characters in
a string

 <string variable>.length()

• cout <<“Length of “ <<word <<” = “ <<word.length()
<<endl;

• length_of_word = word.length();

• No memory is allocated when a string variable
is declared, length is zero characters.

• Empty string is “”

 length is zero characters.

Mr. Dave Clausen 37

string Functions
string Member Function What It Does Example Use
int length() Returns the number

of characters in the

string.

string word=””;

int word_length =0;

word = "Hello there";

word_length = word.length();

cout<<word_length;

// Displays 11
int find(<a string>) Returns the starting

position of the first

occurrence of a

string or -1 if the

string does not

exist.

string word=””;

int location =0;

word = "Hello there";

location = word.find("there");

cout << location;

// Displays 6

int find(<a character>) Returns the starting

position of the first

occurrence of a

character or -1 if

the character does

not exist.

string word=””;

int location =0;

word = "Hello there";

location = word.find('H');

cout << location;

// Displays 0

string substr(<position>,

 <length>)
Returns a substring

of length

characters starting

at position

string word=””;

string word2=””;

word = "Hello there";

word2 = word.substr(3, 2);

cout << word2;

// Displays "lo"

Mr. Dave Clausen 38

String Concatenation

• Concatenation

 an operation to append the contents of one data

structure after the contents of another data

structure

 + means concatenate for strings

 + means addition for numbers

Mr. Dave Clausen 39

Concatenation Example 1

• To create a new string
string first, second, third;

first = “Hi”;

second = “ there”;

third = first + second;

cout<<third;

Mr. Dave Clausen 40

Concatenation Example 2

• To append a character to the end of a string

string singular; //error in textbook, this is correct

singular = “fish”;

cout << singular + “es”;

Mr. Dave Clausen 41

Library Functions

• Different versions of C+ + have different library

functions available.

• #include <cmath>

• Form for using a function:

 <function name> (<argument list>);

 an argument is a expression, variable or

constant

• A function is invoked or called when used in a

statement

• answer = pow(3,4);

• result = pow(base, exponent);

Mr. Dave Clausen 42

Library Functions

• List of Library Functions in Appendix 2

• Two to know for now…

 sqrt square root

 pow raise a base to a power

 Examples:

• sqrt (25) sqrt (25.0)

• pow(2,4) pow(-3,5) pow(2.0,4)

• square_root = sqrt (number);

• answer = pow(base, exponent);

Mr. Dave Clausen 43

Sample Library Functions

Function Declaration Action of Function
double fmod(double x, double y); returns floating-point remainder of x / y
double log(double x); returns natural logarithm of x
double pow(double x, double y); returns x raised to power of y
double sqrt(double x); returns square root of x
double cos(double x); returns cosine of x

Expression Value
pow(2, 4) 16
pow(2.0, 4) 16.0
pow(-3, 2) 9
fmod(5.3, 2.1) 1.1
sqrt(25.0) 5.0
sqrt(25) 5
sqrt(0.0) 0.0
sqrt(-2.0) Not permissible

Mr. Dave Clausen 44

Member Functions

• Some library functions are associated with

a data type called classes.

• Class: a description of the attributes and

behavior of a set of computational objects.

• Member function: an operation defined for

a class of objects

• Member functions are called using a

different syntax.

Mr. Dave Clausen 45

Member Function Syntax

• Conventional functions

 <conventional function name> (variable name)

• Member functions

 <variable name>.<member function name> ()

 for example:

• cout<< word.length()

• number_of_characters = word.length()

Mr. Dave Clausen 46

Declaring Variables & Constants

Examples

const double TAX_RATE = 0.75;

int main()

{

int sum, counter;

int total = 0, product = 1;

double average;

char repeat_program;

string name;

Mr. Dave Clausen 47

Type Compatibility

• Mixed mode expressions

 expressions with different data types

• int, char, double, etc. in the same expression

• Pascal and BASIC would give a Type

Mismatch Error Message and quit

• C+ + does not give any error messages for this

• Extra care is necessary for mixed mode

expressions

Mr. Dave Clausen 48

Type Conversion

• Type promotion

 converting a less inclusive data type into a

more inclusive data type (i.e. int to double)

 When adding an integer to a double, the

compiler converts the integer to type double,

adds, and gives an answer of type double.

 int, char, and double are “compatible”

Mr. Dave Clausen 49

Implicit Type Conversions

int_var = double_var;

double_var = int_var;

int_var = char_var;

char_var = int_var;

Ex.

whole_num=‘A’ + 1;

digit = ‘5’ - ‘0’;

Truncates the decimals

adds .0

get ASCII code of char

get the character whose

ASCII code is the

integer value

66

5

Mr. Dave Clausen 50

Case Changing

of Character Values

lower_case = upper_case - ‘A’ + ‘a’;

OR:

const int CASE_CHANGE = 32;

lower_case = upper_case + CASE_CHANGE;

upper_case = lower_case - CASE_CHANGE;

OR:

lower_case = tolower (upper_case);

upper_case = toupper (lower_case);

Mr. Dave Clausen 51

Case Changing of Character

Values 2

integer_variable = character_variable;

int_var = int (char_var);

Mr. Dave Clausen 52

Type Casts

• Type cast

 an operation that a programmer can use to convert

the data type

• Explicit type conversion

 the use of an operation by the programmer to

convert one type of data into another

• Form of type cast

 <type name> (<expression>);

 (<type name>) <expression>;

Mr. Dave Clausen 53

Explicit Type Conversion

Examples

cout<< int (double_variable) <<endl;

cout<< (long int) integer_var;

answer = double (numerator) / double (denominator);

Type casting can add clarity to your program

while reminding you of the data types involved

in your calculations.

Mr. Dave Clausen 54

Explicit Type Conversion

Examples 2

//cast a double to an int: loses decimals

int_var = (int) double_var;

//cast an int to a double: adds .0

double_var = (double) int_var;

//cast a char to an int: get ASCII code of char

int_var = (int) char_var;

//cast an int to a char: get the character if in range

char_var = (char) int_var;

Random Numbers

• Please refer to this program, carefully

reading the comments.

Random.cpp

Mr. Dave Clausen 55

RANDOM.CPP

