Chapter 3:
Arithmetic,Variables, Input,
Constants, & Library Functions

Objectives

Use data of types int and double in arithmetic
expressions.

|dentify mixed-mode expressions and convert data
to different types when necessary.

Understand the utilization of memory for storing
data.

Declare, initialize, and use variables In
expressions, assignment statements, and output
statements.

Mr. Dave Clausen 2

Objectives cont.

Use the standard input stream and its
operator to get data for a program.

Declare and use string variables.

Know how character data are represented In
computer memory.

Use constants, library functions, and
member functions In programs.

Mr. Dave Clausen

Integer Arithmetic

Addition
Subtraction

7 Multiplication

>/ Quotient (Integer Division)
> Y0 Remainder (Modulus)
Quotient

Divisor) Dividend + o rrainder

Divisor

Integer Order Of Operations

 EXpressions within parentheses
- nested parentheses: from inside out

» * (multiplication), % (modulus), / (division)
- from left to right

» + (addition), - (subtraction)
- from left to right

Mr. Dave Clausen

Integer Arithmetic (Examples)

(3-4*5= 5

3* ()= -6

17/3= o
2

17 % 5 =

17/(-3)= -5
17% 7= -3

-42+50%17= -26

2

Integers

Stored as binary numbers inside the
computer.

Integers produce exact answers
Int._Min and Int_Max
-2,147,483,648 and 2,147,483,647

Integer Overflow

= @ number: Is too large or too small to store
* N0 error message

- unpredictable value

Mr. Dave Clausen

Real Number Arithmetic

Type double:
° + Addition
o - Suptraction
o Viultiplication

s | Division

Real Number
Order Of Operations

» EXpressions within parentheses
- nested parentheses: from inside out

* (multiplication), / (di

= Trom lert to rig

» + (addition), - (subtraction)
* Trom Iett to rignt

Real Number Arithmetic
(Examples)

2.0* (1.2 - 4.3)

2"‘/(.)0 + 5. O)g 2.1
5.1*20= 6.2

-12.6/5.0+35.0= -1.2

Real Numbers

Bring Calculators to check your math
Are stored using binary numbers

Round Off Error
- 1.0/3.0=0.3333..........

Underflow

= very small numbers may be stored as zero
0)50]0]0]0]0/0/0/0/010/00]0]0]0]0]0]0]0)MACHS] (0] (=lo I=IvA<] {0

Mr. Dave Clausen

11

Real Numbers

 Representational errors

- precision of data reduced because of the order
In which operations are performed
- (-45.5 + 45.6) + 0.215 = 0.315
e 0.1 +0.215=0.315

- -455 + (45.6 + 0.215) = 0.3

o |f three digits of accuracy are the computers limit
« 45,6 + 0.215= 45.815 or 45.8
e -455+45.8 =0.3

Mr. Dave Clausen

12

Real Numbers

e Cancellation Error

- lost data due to differences in the precision of
operands

- 2 +0.0005 = 2.0005 but only 2.00 if 3 digits of
precision

= |f possible, add all small numbers before
adding to a larger number

- Real Overflow: trying to store very large
NUMMBErs

Mr. Dave Clausen 13

Real Number Limits

- DBL_MIN
2.22507e-303

- 1./9769e+500

> Number or digits In double: 15

Variables

» Memory Location
- storage cell that can be accessed by address

» \ariable

- memory location, referenced by 1dentifier,
whose value can be changed during a program

» Constant

= Symbol whose value can’t be changed i the
body of the program

Mr. Dave Clausen

15

Assighment Statements

A Method of putting values into memory
locations

- <variable name> = <value>;
- <variable name> = <expression>;

Assignment Is made from right to left
Constants can’t be on left side of statement

Expression Is a Constant or variable or
combination thereof

Mr. Dave Clausen

16

Assighment Statements

Values on right side not normally changed

variable and expression must be of
compatible data types (more later)

Previous Vvalue of variable discarded to
make room for the new value

For now, char, Int, and double are
compatible with each other

Mr. Dave Clausen 17

Assignment Examples

scorel = 72.3;
score2 = 89.4:

Compound Assignments

» “Short hand” notation for frequently used
assignments (\We will not use these for
readability of our programs.)

Sample Program

Here Is a program that prints data about the
cost of three textbooks and calculates the

BOOKSDev.cpp

Software Engineering

- Self-documenting code

- Code that Is written using descriptive
Identifiers

» Always use descriptive variable names and
constant names

- Remember: don’t abbreviate identifier names
when possible.

Mr. Dave Clausen

21

Input

* cin (pronounced see-in)
- gets data from keyboard, the standard input stream

- extractor operator >>

o obtain input from standard input stream and direct It to a
variable (extract from stream to variable)

- Inserter operator <<
o Insert data into standard output stream

A =CICH |
o Extractor Greater Greater, Inserter [Less l_ess

Mr. Dave Clausen 22

Input

 Data read in from keyboard must match the
type of variable used to store data
» Interactive Input

- enter values from keyboard while the program
IS running

* CIn causes the program to stop and wait for the
user to enter data from the keyboard

= prompt the user: for the data (user friendly)

Mr. Dave Clausen 23

Input: Sample Programs

No prompt for any of the data values:

INPUTDev.cpp

INPUTDev.cpp
TRIPLESDev.cpp

Character Data

» Type char
* each char Is associated with an integer value

» Collating sequence
- order of character data used by the computer

» Character set
- the character list available

- ASCII (American Standard Code for Information
Interchange) on our systems: page 85

Mr. Dave Clausen 25

—\ ..wO> o € =

FJo . OZ X ao_ >

—
LLI
S_o00O==cx 50O
¢ .o d>_ .o 1
D
@)
—— ..6@.J_|Ahr|
< !

Full ASCII Code Chart

et Hirml Chr] Dec Hx Oct Hirml Chr
[rll) ! ace| 64 40 100 :
rt of heading) ! 65 41 101

Th 1 = LM = O
=
N (O O P R Y

L0 . |

L
=

T R B ST U S P

H o oo
=

ntal tab)
[NL line feed, new line)
[wertical tah)
m feed, new page)
ge return)

ntrol 3)
control 4)

[cancel)
(end of medium)
(suhsti

l-_J -_. B

[file

[group]
[Eecok: arator)
[unit separator)

—

2 122
1
l.

51

o1

71

g1
1
1
1

1

11
1
13

7
7
7
7

= H

Source: vwww.

Mr. Dave Clausen

Constants

Symbolic constant: Pl
Literal constant: 3.14

Constant declaration section
- after Preprocessor Directives
- after “using namespace std;”

- pefore type definition section, program heading,
and the Int main() function.

- LLiteral constant Is assigned to symbolic constant
» const double Pl = 3.14;

Style for constants IS ALL_CAPS

Mr. Dave Clausen 28

Rationale for using Constants

» Programs are easier to read

- Easler to change values that are currently fixed
but subject to change In the future

- 1.e. STATE_TAX RATE
- change one line, rather than searching every line

» Programs more reliable
- fewer chances for typos

= compiler will “catch™ named constant typos

Mr. Dave Clausen 29

Library Constants

» What are the ranges from minimum to
maximum for the types char, int, double,
etc.?

- # Include <limits>;
- # Include <cfloat>;

o \/aries by computer system
 Here Is a test program to display the values
SIZESIDEV.CPR

Mr. Dave Clausen

30

SIZESDev.cpp

String Variables

string data type
Used to store a sequence of characters
string name; //not initialized

e string TfullName = **; //initialized to empty string

» string myName = “Mr. Clause

String Input with >>

The >> operator ignores leading whitespace
* Space, tab, or carriage return

Then reads nonblank characters
- until next whitespace character

- user Is allowed to use backspace or delete
o until next whitespace character

Upon return or whitespace string Is stored

>> Can’t be used for strings with spaces.
RPage 66

Mr. Dave Clausen

32

PG88EX1CINfullname.CPP

String Input with getline

» Getline function
* reads characters, tab, space into string variable
* until newline (‘/n’) char

- the newline char Is not stored In the string
variable

- getline (<input stream>, <string variable>);
o getline (cin, name);
= doesn’t ignore leading whitespace characters
POSGEX2

Mr. Dave Clausen 33

PG88EX2.CPP

Using cin>> before getline

>> reads and stores up to newline
getline reads newline as first char of line

PG89EX3V2.CPP

Solutions for >> before getline

 Use getline (cin, consume_newline) to
consume newline character

» This Is the required method, for example:

PG89EX5.CPP

More on strings

» Length function returns number of characters In
a string

+ <string variable>.length()

» cout <<*“Length of “ <<word << = *“ <<word.length()
<<endl;

o |length_of word = word.length();
> No memory Is allocated when a string variable
IS declared, length Is zero characters.

€eod

* Empty string is
- length IS zero characters.

Mr. Dave Clausen 36

string Functions

string Member Function What It Does Example Use

int length()

int find(<a string>)

int find(<a character>)

string substr (<position>,
<length>)

Returns the number
of characters in the
string.

Returns the starting
position of the first
occurrence of a
string or -1 if the
string does not
exist.

Returns the starting
position of the first
occurrence of a
character or -1 if
the character does
not exist.

Returns a substring
of length
characters starting
at position

string word="";

int word length =0;

word = "Hello there";

word length = word.length();
cout<<word length;

// Displays 11

string word="";

int location =0;

word = "Hello there";
location = word.find("there") ;
cout << location;

// Displays 6

string word="";

int location =0;

word = "Hello there";
location = word.find('H');
cout << location;

// Displays 0

string word="";

string word2="";

word = "Hello there";
word2 = word.substr (3, 2);
cout << word2;

// Displays "lo"

Mr. Dave Clausen 37

String Concatenation

» Concatenation
- an operation to append the contents of one data

= + means concatenate tor strings

* + means addition Tor nUMoers

Concatenation Example 1

 To create a new string
string first, second, third,;

tnira = Tirst + second;

Cout<<tnira;

Concatenation Example 2

» To append a character to the end of a string

+ 1 AL o) 929
singular = “fish™;
_.__L_)«o—w— ——t v)

1T << c1v 1a+r L ““Ac?’.
COUL << singular + “es’;

Library Functions

- Different versions of C+ + have different library
functions available.
» #include <cmath>

» Form for using a function:
- <function name> (<argument list>);
- an argument IS a expression, variable or
constant
» A function Is invoked or called when used In a

Statement
o answer = pow(3,4);
e result = pow(base, exponent);

Mr. Dave Clausen

41

Library Functions

» List of Library Functions in Appendix 2

* Two to know for now...
- sgrt sguare root
* pOW raise a base to a power

- Examples:
* sgrt (25) sgrt(25.0)
« pow(2,4) pow(-3,5) pow(2.0,4)
o Square_root = sgrt (numlker);
o answer = pow(base, exponent);

Mr. Dave Clausen

42

Sample Library Functions

Function Declaration Action of Function

double cos (double x) ; returns cosine of x

nEe Expression Value
=== pow(2, 4) 16

pow (2.0, 4) 16.0
EEE pow (-3, 2)

9

=== fmod (5.3, 2.1) 11
S sqrt(25.0) 5.0
T sqrt(25) 5
.-- sqrt(0.0) 0.0
T sqrt(-2.0) Not permissible
L[
L L[
N

Member Functions

Some library functions are associated with
a data type called classes.

Class: a description of the attributes and
behavior of a set of computational objects.

Member function: an operation defined for
a class of objects

Member functions are called using a
different syntax.

Mr. Dave Clausen

44

Member Function Syntax

» Conventional functions
- <conventional function name> (variable name)

» Member functions
- <variable name>.<member function name> ()

- for example:
e cout<< word.length()
» number_of_characters = word.length()

Mr. Dave Clausen 45

Declaring Variables & Constants
Examples

const double TAX RATE = 0.75;

Int main(

Int sum, counter;
Int total = 0, product = 1;

cnar repeat_program;

V.

tFINg Name;

Type Compatibility

Mixed mode expressions

- expressions with different data types
o Int, char, double, etc. in the same expression

Pascal and BASIC would give a Type
Mismatch Error Message and quit

C+ + does not give any error messages for this

Extra care IS necessary for mixed mode
EXPressions

Mr. Dave Clausen 47

Type Conversion

» Type promotion

- converting a less inclusive data type into a
more Inclusive data type (i.e. int to double)

- \When adding an integer to a double, the
compiler converts the integer to type double,
adds, and gives an answer of type double.

= 1nt, char, and double are “compatible™

Mr. Dave Clausen 48

Implicit Type Conversions

Int_var = double var;
double var = Int_var;
Int_var = char_var,
char_var = Int_var;

EX.
whole num=°A’ + 1;
digit = 5" - “0°;

Truncates the decimals
adds .0
get ASCII code of char

get the character whose
ASCII code Is the
Integer value

66
5

Mr. Dave Clausen

49

Case Changing
of Character Values

lower _case = upper_case - ‘A’ + ‘a’;

OR:

const iInt CASE_ CHANGE = 32;

lower _case = upper_case + CASE_ CHANGE;
upper_case = lower_case - CASE_ CHANGE;
OR:

lower_case = tolower (upper_case);
Upper_case = toupper: (lower_case);

Mr. Dave Clausen 50

Case Changing of Character
Values 2

Integer_variable = character_variable;

Int_var = Int (char_var);

Type Casts

» Type cast

- an operation that a programmer can use to convert
the data type

 EXplicit type conversion

- the use of an operation by the programmer to
convert one type of data into another

» Form of type cast
= <type name> (<expression>);
+ (<type name>) <expression>;

Mr. Dave Clausen 52

Explicit Type Conversion
Examples

cout<< int (double_variable) <<endl,
cout<< (long Int) integer_var;
answer = double (numerator) / double (denominator);

Type casting can add clarity to your program
while reminding you of the data types involved
In your calculations.

Mr. Dave Clausen 53

Explicit Type Conversion
Examples 2

//cast a double to an int: loses decimals

Int_var = (int) double_var;

//cast an Int to a double: adds .0

double_var = (double) Int_var;

//cast a char to an Int: get ASCII code of char
Int_var = (int) char_var;

//cast an Int to a char: get the character If In range
char_var = (char) Iint_var;

Mr. Dave Clausen 54

Random Numbers

» Please refer to this program, carefully
reading the comments.

RANGEM.CPP

RANDOM.CPP

