
Chapter 3:

Arithmetic,Variables, Input,

Constants, & Library Functions

Mr. Dave Clausen

La Cañada High School

Objectives

• Use data of types int and double in arithmetic

expressions.

• Identify mixed-mode expressions and convert data

to different types when necessary.

• Understand the utilization of memory for storing

data.

• Declare, initialize, and use variables in

expressions, assignment statements, and output

statements.

Mr. Dave Clausen 2

Objectives cont.

• Use the standard input stream and its

operator to get data for a program.

• Declare and use string variables.

• Know how character data are represented in

computer memory.

• Use constants, library functions, and

member functions in programs.

Mr. Dave Clausen 3

Mr. Dave Clausen 4

Integer Arithmetic

• + Addition

• - Subtraction

• * Multiplication

• / Quotient (Integer Division)

• % Remainder (Modulus)

Divisor

mainder
Quotient

DividendDivisor
Re

 

Mr. Dave Clausen 5

Integer Order Of Operations

• Expressions within parentheses

 nested parentheses: from inside out

• * (multiplication), % (modulus), / (division)

 from left to right

• + (addition), - (subtraction)

 from left to right

Mr. Dave Clausen 6

Integer Arithmetic (Examples)

(3-4)*5 =

3 * (-2) =

17 / 3 =

17 % 3 =

17 / (-3) =

-17 % 7 =

-42+50%17=

-5

-6

5

2

-5

-3

-26

Mr. Dave Clausen 7

Integers

• Stored as binary numbers inside the

computer.

• Integers produce exact answers

• Int_Min and Int_Max

-2,147,483,648 and 2,147,483,647

• Integer Overflow

 a number is too large or too small to store

 no error message

 unpredictable value

Mr. Dave Clausen 8

Real Number Arithmetic

• Type double:

• + Addition

• - Subtraction

• * Multiplication

• / Division

Mr. Dave Clausen 9

Real Number

Order Of Operations

• Expressions within parentheses

 nested parentheses: from inside out

• * (multiplication), / (division)

 from left to right

• + (addition), - (subtraction)

 from left to right

Mr. Dave Clausen 10

Real Number Arithmetic

(Examples)

2.0 * (1.2 - 4.3) =

2.0 * 1.2 - 4.3 =

-12.6 / (3.0 + 3.0) =

3.1 * 2.0 =

-12.6 / 3.0 + 3.0 =

-6.2

-1.9

-2.1

6.2

-1.2

Mr. Dave Clausen 11

Real Numbers

• Bring Calculators to check your math

• Are stored using binary numbers

• Round Off Error

 1.0/3.0 = 0.3333……….

• Underflow

 very small numbers may be stored as zero

0.0000000000000000000123 stored as zero

Mr. Dave Clausen 12

Real Numbers

• Representational errors

 precision of data reduced because of the order

in which operations are performed

 (-45.5 + 45.6) + 0.215 = 0.315

• 0.1 + 0.215 = 0.315

 -45.5 + (45.6 + 0.215) = 0.3

• if three digits of accuracy are the computers limit

• 45.6 + 0.215= 45.815 or 45.8

• -45.5 + 45.8 = 0.3

Mr. Dave Clausen 13

Real Numbers

• Cancellation Error

 lost data due to differences in the precision of

operands

 2 + 0.0005 = 2.0005 but only 2.00 if 3 digits of

precision

 If possible, add all small numbers before

adding to a larger number

 Real Overflow: trying to store very large

numbers

Mr. Dave Clausen 14

Real Number Limits

• DBL_MIN

2.22507e-308

• DBL_MAX

 1.79769e+308

• Number of digits in double: 15

Mr. Dave Clausen 15

Variables

• Memory Location

 storage cell that can be accessed by address

• Variable

 memory location, referenced by identifier,

whose value can be changed during a program

• Constant

 Symbol whose value can’t be changed in the

body of the program

Mr. Dave Clausen 16

Assignment Statements

• A Method of putting values into memory

locations

 <variable name> = <value>;

 <variable name> = <expression>;

• Assignment is made from right to left

• Constants can’t be on left side of statement

• Expression is a Constant or variable or

combination thereof

Mr. Dave Clausen 17

Assignment Statements

• Values on right side not normally changed

• variable and expression must be of

compatible data types (more later)

• Previous value of variable discarded to

make room for the new value

• For now, char, int, and double are

compatible with each other

Mr. Dave Clausen 18

Assignment Examples

• score1 = 72.3;

• score2 = 89.4;

• score3 = 95.6;

• average = (score1 + score2 + score3) / 3.0

 why not divide by 3 instead of 3.0?

Mr. Dave Clausen 19

Compound Assignments

• “Short hand” notation for frequently used

assignments (We will not use these for

readability of our programs.)

Short hand

x += y

x -= y

x *= y

x /= y

x %= y

Longer form

x = x + y

x = x - y

x = x * y

x = x / y

x = x % y

Mr. Dave Clausen 20

Sample Program

Here is a program that prints data about the

cost of three textbooks and calculates the

average price of the books:

BooksDev.cpp

BOOKSDev.cpp

Mr. Dave Clausen 21

Software Engineering

• Self-documenting code

 Code that is written using descriptive

identifiers

• Always use descriptive variable names and

constant names

 Remember: don’t abbreviate identifier names

when possible.

Mr. Dave Clausen 22

Input

• cin (pronounced see-in)

 gets data from keyboard, the standard input stream

 extractor operator >>

• obtain input from standard input stream and direct it to a

variable (extract from stream to variable)

 inserter operator <<

• insert data into standard output stream

 EGG ILL

• Extractor Greater Greater, Inserter Less Less

Mr. Dave Clausen 23

Input

• Data read in from keyboard must match the

type of variable used to store data

• Interactive Input

 enter values from keyboard while the program

is running

 cin causes the program to stop and wait for the

user to enter data from the keyboard

 prompt the user for the data (user friendly)

Mr. Dave Clausen 24

Input: Sample Programs

No prompt for any of the data values:

INPUTDev.cpp

One prompt for each data value (preferred)

TRIPLESDev.cpp

INPUTDev.cpp
TRIPLESDev.cpp

Mr. Dave Clausen 25

Character Data

• Type char

 each char is associated with an integer value

• Collating sequence

 order of character data used by the computer

• Character set

 the character list available

 ASCII (American Standard Code for Information

Interchange) on our systems: page 85

Mr. Dave Clausen 26

ASCII Code

0 1 2 3 4 5 6 7 8 9

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT

1 LF VT FF CR SO SI DLE DC1 DC2 DC3

2 DC4 NAK SYN ETB CAN EM SUB ESC FS GS

3 RS US SP ! " # $ % & `

4 () * + , - . / 0 1

5 2 3 4 5 6 7 8 9 : ;

6 < = > ? @ A B C D E

7 F G H I J K L M N O

8 P Q R S T U V W X Y

9 Z [\] ^ _ ' a b c

10 d e f g h i j k l m

11 n o p q r s t u v w

12 x y z { | } ~ DEL

Mr. Dave Clausen 27

Full ASCII Code Chart

Mr. Dave Clausen 28

Constants

• Symbolic constant: PI

• Literal constant: 3.14

• Constant declaration section

 after Preprocessor Directives

 after “using namespace std;”

 before type definition section, program heading,
and the int main() function.

 Literal constant is assigned to symbolic constant

• const double PI = 3.14;

• Style for constants is ALL_CAPS

Mr. Dave Clausen 29

Rationale for using Constants

• Programs are easier to read

• Easier to change values that are currently fixed

but subject to change in the future

 i.e. STATE_TAX_RATE

 change one line, rather than searching every line

• Programs more reliable

 fewer chances for typos

 compiler will “catch” named constant typos

Mr. Dave Clausen 30

Library Constants

• What are the ranges from minimum to
maximum for the types char, int, double,
etc.?

 # include <limits>;

 # include <cfloat>;

• Varies by computer system

• Here is a test program to display the values

SIZESDev.cpp

SIZESDev.cpp

Mr. Dave Clausen 31

String Variables

• string data type

• Used to store a sequence of characters

• string name; //not initialized

• string fullName = “”; //initialized to empty string

• string myName = “Mr. Clausen”;

Mr. Dave Clausen 32

String Input with >>

• The >> operator ignores leading whitespace

 space, tab, or carriage return

• Then reads nonblank characters

 until next whitespace character

 user is allowed to use backspace or delete

• until next whitespace character

• Upon return or whitespace string is stored

• >> Can’t be used for strings with spaces.

Page 88

PG88EX1CINfullname.CPP

Mr. Dave Clausen 33

String Input with getline

• Getline function

 reads characters, tab, space into string variable

 until newline (‘/n’) char

 the newline char is not stored in the string

variable

 getline (<input stream>, <string variable>);

• getline (cin, name);

 doesn’t ignore leading whitespace characters

Pg88ex2

PG88EX2.CPP

Mr. Dave Clausen 34

Using cin>> before getline

• >> reads and stores up to newline

• getline reads newline as first char of line

• and quits reading at newline

• any string variables in getline are empty

Pg89ex3v2

PG89EX3V2.CPP

Mr. Dave Clausen 35

Solutions for >> before getline

• Use getline (cin, consume_newline) to

consume newline character

• This is the required method, for example:

P89ex5

PG89EX5.CPP

Mr. Dave Clausen 36

More on strings

• Length function returns number of characters in
a string

 <string variable>.length()

• cout <<“Length of “ <<word <<” = “ <<word.length()
<<endl;

• length_of_word = word.length();

• No memory is allocated when a string variable
is declared, length is zero characters.

• Empty string is “”

 length is zero characters.

Mr. Dave Clausen 37

string Functions
string Member Function What It Does Example Use
int length() Returns the number

of characters in the

string.

string word=””;

int word_length =0;

word = "Hello there";

word_length = word.length();

cout<<word_length;

// Displays 11
int find(<a string>) Returns the starting

position of the first

occurrence of a

string or -1 if the

string does not

exist.

string word=””;

int location =0;

word = "Hello there";

location = word.find("there");

cout << location;

// Displays 6

int find(<a character>) Returns the starting

position of the first

occurrence of a

character or -1 if

the character does

not exist.

string word=””;

int location =0;

word = "Hello there";

location = word.find('H');

cout << location;

// Displays 0

string substr(<position>,

 <length>)
Returns a substring

of length

characters starting

at position

string word=””;

string word2=””;

word = "Hello there";

word2 = word.substr(3, 2);

cout << word2;

// Displays "lo"

Mr. Dave Clausen 38

String Concatenation

• Concatenation

 an operation to append the contents of one data

structure after the contents of another data

structure

 + means concatenate for strings

 + means addition for numbers

Mr. Dave Clausen 39

Concatenation Example 1

• To create a new string
string first, second, third;

first = “Hi”;

second = “ there”;

third = first + second;

cout<<third;

Mr. Dave Clausen 40

Concatenation Example 2

• To append a character to the end of a string

string singular; //error in textbook, this is correct

singular = “fish”;

cout << singular + “es”;

Mr. Dave Clausen 41

Library Functions

• Different versions of C+ + have different library

functions available.

• #include <cmath>

• Form for using a function:

 <function name> (<argument list>);

 an argument is a expression, variable or

constant

• A function is invoked or called when used in a

statement

• answer = pow(3,4);

• result = pow(base, exponent);

Mr. Dave Clausen 42

Library Functions

• List of Library Functions in Appendix 2

• Two to know for now…

 sqrt square root

 pow raise a base to a power

 Examples:

• sqrt (25) sqrt (25.0)

• pow(2,4) pow(-3,5) pow(2.0,4)

• square_root = sqrt (number);

• answer = pow(base, exponent);

Mr. Dave Clausen 43

Sample Library Functions

Function Declaration Action of Function
double fmod(double x, double y); returns floating-point remainder of x / y
double log(double x); returns natural logarithm of x
double pow(double x, double y); returns x raised to power of y
double sqrt(double x); returns square root of x
double cos(double x); returns cosine of x

Expression Value
pow(2, 4) 16
pow(2.0, 4) 16.0
pow(-3, 2) 9
fmod(5.3, 2.1) 1.1
sqrt(25.0) 5.0
sqrt(25) 5
sqrt(0.0) 0.0
sqrt(-2.0) Not permissible

Mr. Dave Clausen 44

Member Functions

• Some library functions are associated with

a data type called classes.

• Class: a description of the attributes and

behavior of a set of computational objects.

• Member function: an operation defined for

a class of objects

• Member functions are called using a

different syntax.

Mr. Dave Clausen 45

Member Function Syntax

• Conventional functions

 <conventional function name> (variable name)

• Member functions

 <variable name>.<member function name> ()

 for example:

• cout<< word.length()

• number_of_characters = word.length()

Mr. Dave Clausen 46

Declaring Variables & Constants

Examples

const double TAX_RATE = 0.75;

int main()

{

int sum, counter;

int total = 0, product = 1;

double average;

char repeat_program;

string name;

Mr. Dave Clausen 47

Type Compatibility

• Mixed mode expressions

 expressions with different data types

• int, char, double, etc. in the same expression

• Pascal and BASIC would give a Type

Mismatch Error Message and quit

• C+ + does not give any error messages for this

• Extra care is necessary for mixed mode

expressions

Mr. Dave Clausen 48

Type Conversion

• Type promotion

 converting a less inclusive data type into a

more inclusive data type (i.e. int to double)

 When adding an integer to a double, the

compiler converts the integer to type double,

adds, and gives an answer of type double.

 int, char, and double are “compatible”

Mr. Dave Clausen 49

Implicit Type Conversions

int_var = double_var;

double_var = int_var;

int_var = char_var;

char_var = int_var;

Ex.

whole_num=‘A’ + 1;

digit = ‘5’ - ‘0’;

Truncates the decimals

adds .0

get ASCII code of char

get the character whose

ASCII code is the

integer value

66

5

Mr. Dave Clausen 50

Case Changing

of Character Values

lower_case = upper_case - ‘A’ + ‘a’;

OR:

const int CASE_CHANGE = 32;

lower_case = upper_case + CASE_CHANGE;

upper_case = lower_case - CASE_CHANGE;

OR:

lower_case = tolower (upper_case);

upper_case = toupper (lower_case);

Mr. Dave Clausen 51

Case Changing of Character

Values 2

integer_variable = character_variable;

int_var = int (char_var);

Mr. Dave Clausen 52

Type Casts

• Type cast

 an operation that a programmer can use to convert

the data type

• Explicit type conversion

 the use of an operation by the programmer to

convert one type of data into another

• Form of type cast

 <type name> (<expression>);

 (<type name>) <expression>;

Mr. Dave Clausen 53

Explicit Type Conversion

Examples

cout<< int (double_variable) <<endl;

cout<< (long int) integer_var;

answer = double (numerator) / double (denominator);

Type casting can add clarity to your program

while reminding you of the data types involved

in your calculations.

Mr. Dave Clausen 54

Explicit Type Conversion

Examples 2

//cast a double to an int: loses decimals

int_var = (int) double_var;

//cast an int to a double: adds .0

double_var = (double) int_var;

//cast a char to an int: get ASCII code of char

int_var = (int) char_var;

//cast an int to a char: get the character if in range

char_var = (char) int_var;

Random Numbers

• Please refer to this program, carefully

reading the comments.

Random.cpp

Mr. Dave Clausen 55

RANDOM.CPP

